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Abstract

Novel approach for statistical inference in survival anal-
ysis based on factor or dichotomic variables is proposed.
We are seeking for the most informative finitely linear
combinations (symptoms) of variables in the finite field.
This procedure necessarily yields the new variable of the
same nature (e.g. factor). Different measures can be used
as an optimality criterion of such combination: entropy, the
uncertainty coefficient, p-level of some statistical tests. We
use this method to determine the major factors of the glioma
postoperation survival. These factors were found to be age,
high-grading factor, stage of illness and a factor of the
stereotactic cryodestruction.

1. Introduction

The usual way to deal with factor variables with two
levels is to treat them as dichotomic and study their linear
combinations in the real field. Following [1], [2] we propose
different approach. Let the number of factor levels equal
to a prime number power. Then the factor variable itself
can be viewed as the element of some Galois field, thus
it becomes possible to study finitely linear combinations of
factors in such field. This idea can be applied to dichotomic
variables and field F2 is appropriate here. Then finitely linear
combination of dichotomic variables yields a new variable
of the same kind with some special meaning.

For example, let variable X1 be equal to 1 if height of
object of interest is big and 0 otherwise; variable X2 be
equal 1 if weight is huge and 0 otherwise. Then, dichotomic
variable X12 = X1 +X2(mod 2) represents the inadequacy
between height and weight. Variable X12 derived this way
can be more informative for statistical analysis.

2. The symptom analysis

2.1. The symptom and syndrome definitions

First, note that the values of the dichotomic vector
X = (X1, . . . , Xn)T are the elements of the finite Euclid

geometry EG(n, 2) and components Xi, i = 1, 2, . . . , n are
elements of the dual projective geometry PG(n− 1; 2) [3].

Definition 1. For τ = (t1, . . . , tk) ⊆ (1, 2, . . . , n) and
Aτ = (a1, . . . , an)T with components aj = 1 if j ∈ τ
and aj = 0 otherwise define symptom Xτ to be a finitely
linear combination of the form

Xτ = ATτ X(mod 2). (1)

Hence symptoms Xτ can be viewed as the points of the
projective geometry PG(n− 1; 2). Every symptom is given
its own number in binary code as follows:

Xm = Xτ , m = a120 + a221 + . . .+ an2n−1. (2)

The number of non-nil coefficients ai means the symptom
rank. Symptoms with a single non-nil coefficient ai are
trivial X2k−1

= Xk, other are nontrivial. The singular
symptom X∅ equals zero with probability one.

Remark. Xm + Xm = X∅(mod 2) and Xm + X∅ =
Xm(mod 2) for all m.

Definition 2. The set of all 2n − 1 symptoms Xm from (2)
forms syndrome ∆n−1 of order (n− 1).

A finitely combination of any pair of symptoms in the
syndrome belongs to the same syndrome. A single symptom
Xτ can be viewed as syndrome ∆0. Two symptoms Xτ and
Xµ belong to the syndrome ∆1 = (Xτ , Xµ, Xν), where
ν = τ41µ. The syndrome ∆k can be obtained via induction
in accordance with the counting sequence as

∆k = (∆k−1, Xν ,∆k−1 +Xν(mod 2)), (3)

where Xν /∈ ∆k−1. Symptoms in the counting sequence
with 2k − 1 raiting are basic. Symptoms that don’t form by
pairs the syndrome with order 1 can be used as basic.

2.2. Syndromes and block designs

Definition 3. Block design is an incidence system
D(v, b, r, k, λ) in which a set X of v points is partitioned

1. The triangle sign denotes the symmetric set difference operation
throughout the paper



α Xα = 0 Xα = 1
(1) 0,2,4,6 1,3,5,7
(2) 0,1,4,5 2,3,6,7

(12) 0,3,4,7 1,2,5,6
(3) 0,1,2,3 4,5,6,7

(13) 0,2,5,7 1,3,4,6
(23) 0,1,6,7 2,3,4,5
(123) 0,3,5,6 1,2,4,7

Table 1. The block design D(8, 14, 7, 4, 3) with
elements from Ω3 = {0, 1, . . . , 7} in the binary code.

into a family of b subsets (blocks) in such a way that any
two points determine λ blocks with k points in each block,
and each point is contained in r different blocks.

In accordance with the Zinger’s theorem [3] the projec-
tive geometry PG(n; 2) corresponds to the block design
D(2n+1 − 1, 2n+1 − 1, 2n − 1, 2n − 1, 2n−1 − 1).

The block design D(v, b, r, k, λ) with v = b and k = r
is symmetric and will be denoted as D(v, k, λ). This, if
we take symptoms of the syndrome ∆n as elements and
syndrome ∆n−1 as blocks, we will obtain symmetric block
design D(2n+1 − 1, 2n − 1, 2n−1 − 1).

The automorphism group SLF2
n+1 of this block design is

the automorphism group of the syndrome ∆n too.
Denote by Ωn set of all possible values of random vector

X = (X1, . . . , Xn)T , Xi ∈ {0; 1}. Any symptom Xm

induce the partition Ωn = Bm ∪ B̄m, where Bm ∩ B̄m = ∅
and |Bm| = |B̄m| = 2n−1; here m is as in (2). Points of the
basic block Bm and additional block B̄m satisfy equations
Xτ = 0 and Xτ = 1 accordingly. The singular symptom
X∅ induces the partition (Ωn, ∅). v = 2n points of Ωn
and b = 2(2n − 1) blocks (Bτ , B̄τ ) form a block design
D(v, b, r, k, λ) corresponding to the finite Euclid geometry
EG(n, 2) where r = 2n − 1, k = 2n−1, λ = 2n−1 − 1.

For example, for n = 3 the syndrome ∆2 contains
symptoms Xτ , Xµ, Xτµ, Xν , Xτν , Xµν , Xτµν which are
elements of D(7, 3, 1). Syndrome ∆1 is constructed from
triples of symptoms: (Xτ , Xµ, Xτµ), (Xτ , Xν , Xτν),
(Xτ , Xµν , Xτµν), (Xµ, Xν , Xµν), (Xµ, Xτν , Xτµν),
(Xτµ, Xµν , Xτν) and (Xτµ, Xν , Xτµν) which are blocks
of design D(7, 3, 1). It is easy to construct the partitions
of Ω3 which correspond to these symptoms and form
D(8, 14, 7, 4, 3) (for example in Tab.1 at τ = (1), µ = (2),
ν = (3)). For the sake of simplicity, elements of Ω3 are
shown in the binary code X1 + 2X2 + 4X3.

2.3. Generalized symptoms and the permutation
group of EG(n, 2)

Definition 4. Consider the set partition Ωn = B ∪ B̄ with
B∩B̄ = ∅ and |B| = |B̄| = 2n−1. The generalized symptom
in the syndrome ∆n−1 is a new dichotomic variable Z with

value zero when X = (X1, . . . , Xn)T ∈ B and value one
otherwise.

Let Z1 and Z2 be generalized symptoms in ∆n−1 and

|B1 ∩B2| = |B̄1 ∩B2| = |B1 ∩ B̄2| = |B̄1 ∩ B̄2| = 2n−2.

Then the generalized symptom Z12 equals to 0 when
X ∈ B1 ∩ B2 ∪ B̄1 ∩ B̄2 and equals to 1 when X ∈
B1 ∩ B̄2 ∪B1 ∩ B̄2. Generalized symptoms Z1, Z2 and Z12

forms the generalized syndrome with order 1. The general-
ized syndrome of greater order can be defined inductively
via counting sequence similar to usual syndromes. Taking
the permutation group of EG(n, 2) into the consideration
we obtain different generalized syndromes. In particular,
for n = 3 they can be described with 30 nonisomorphic
permutations of block design D(8, 14, 7, 4, 3) on the base of
group SLF2

4 (which is isomorphic to the even permutation
group A8 [4]).

2.4. Informative and stochastic characteristics of
syndromes

The syndrome distribution is defined as joint distribution
of basic symptoms. It is not difficult to show the invari-
ance of the syndrome distribution towards its automorphism
group. The main characteristic of discrete distribution X :
(p1, . . . , pN ) is the entropy

HX = −
N∑
i=1

pi log2 pi. (4)

The uncertainty coefficient can be used for the measurement
of influence of random variable X to Y :

JX|Y =
HX +HY −HX,Y

HY
.

Here HX,Y denotes the entropy of joint distribution of X
and Y and conditional entropy HX|Y is defined as

HX|Y = HX,Y −HY , (5)

The value I(X,Y ) = HX +HY −HX,Y = HX −HX|Y =
HY −HY |X is the joint information for X and Y . The next
theorem is proved in [2] and can be applied to generalized
symptoms as well.

Theorem 1. For basic symptoms X0, X1, . . . , Xn ∈ ∆n we

have H∆n = HX0 +
n∑
j=1

HZj |∆j−1 , where Zj = (Xj +

Xτj (mod 2)), Xτj ∈ ∆j−1 ∪X∅, j = 1, . . . , n.

Definition 5. Let X be a factor variable with levels
A = {x0, . . . , xk} and {N0, . . . , Nk} is the corresponding

frequency set,
k∑
i=0

Ni = N is the sample size. Variety VX(A)



of the random sample on the basis of the variable X with
level set A is

VX(A) = N log2N −
k∑
i=0

Ni log2Ni.

It is not difficult to show the connection between the
entropy and the variety:

VX(A) = NĤX , (6)

where ĤX is calculated according to (4) with the empirical
distribution (N0

N , . . . , NkN ).
The variety on the basis of X = (X1, . . . , Xn)T is defined

as IX1(A) + . . .+ IXn(A) [5].
Let X = (X1, . . . , Xn)T be a random dichotomic vector

and Ωn = {0, 1, 2, . . . , 2n − 1} is the its set of all possible
values. Denote by N0, . . . , N2n−1 the frequency set in the
binary code. Consider C = (c0, . . . , cl) ⊆ Ωn and a
dichotomic variable Y which equals to 0 if X ∈ C and
1 otherwise. Then we have

VY (Ωn) = g(Ωn)− g(C)− g(C̄), (7)

where g(C) =
(

l∑
i=0

Nci

)
log2

(
l∑
i=0

Nci

)
.

Theorem 2. Let the generalized symptom Y induce the set
partition Ωn = C ∪ C̄ and |C| = |C̄|. Then

VY (C) + IY (C̄) = N

n∑
i=1

ĤXi|Y . (8)

Proof: Denote by (Bi, B̄i) the set partition of Ωn =
Bi ∪ B̄i induced by the basic symptom Xi, i = 1, . . . , n.
Then from (7) we deduce VXi(C) = g(C) − g(CBi) −
g(CB̄i), VXi(C̄) = g(C̄)− g(C̄Bi)− g(C̄B̄i).

VY (C) + IY (C̄) =
n∑
i=1

(g(C)− g(CBi)− g(CB̄i) +

+g(C̄)− g(C̄Bi)− g(C̄B̄i) + g(Ωn)− g(Ωn)) =

(7)=
n∑
i=1

VY Xi(Ωn)− VY (Ωn) =

(6)= N

n∑
i=1

(ĤY Xi − ĤY ) (5)= N

n∑
i=1

ĤXi|Y .

Via summing of all varieties of all pairs of blocks in
design we obtain a variety of block design. Note that
lower block design variety means the greater information
significance of the generalized symptom Y towards the basic
symptoms.

Definition 6. Let ∆n consist of N = 2n+1 − 1 symptoms
X1, . . . , XN . The syndrome entropy H(∆n) is the entropy
of the joint distribution of the basic symptoms. The summary

syndrome entropy HΣ(∆n) is
N∑
i=1

HXi .

Theorem 3. Denote by c = 1
2

7∑
i=1

H(∆1(i)), ∆1(i) ∈ ∆2.

Then
∑

τ⊆{1,2,3}

HXτ =
1
6

∑
τ,µ⊆{1,2,3}

I(XτXµ) + c. (9)

Proof: For symptoms Xτ , Xµ, Xτµ from the syn-
drome ∆1 we have I(Xτ , Xµ) = HXτ + HXµ − H(∆1),
I(Xτ , Xτµ) = HXτ + HXτµ − H(∆1), I(Xτµ, Xµ) =
HXτµ +HXµ −H(∆1). Thus I(Xτ , Xµ) + I(Xτ , Xτµ) +
I(Xµ, Xτµ) = 2(HXτ +HXµ+HXτµ)−3H(∆1). Using the
characteristics v = 7 and r = 3 of block design D(7, 3, 1)
we obtain

3
v∑
i=1

H(∆1(i)) = 2r
∑

τ⊆{1,2,3}

HXτ−
∑

τ,µ⊆{1,2,3}

I(Xτ , Xµ),

and (9) follows trivially. Let us show that c is constant.
The ∆1 distribution is determined by probabilities on four
components of the vector

(Bτ , Bτ )⊗ (Bµ, Bµ) = (BτBµ, BτBµ, BτBµ, BτBµ).

Syndromes of ∆1(i) exhaust all 28 = C2
8 = 4 · 7 possible

pairs of elements in D(8, 14, 7, 4, 3) which is formed from

symptoms Xτ , τ ⊂ {1, 2, 3}. Hence
7∑
i=1

H(∆1(i)) is same

for all permutations of this block design.
This statement is proved in special case n = 2, but can

be easily generalized. In that way the minimal summary
syndrome entropy HΣ(∆n) means the minimal connection
between symptoms.

2.5. Algorithm for determination of the most infor-
mative syndromes

Our main aim is to choose the most informative syn-
dromes from the syndrome with higher order. For example,
in order to pick out the most informative ∆2 we should
enumerate all possible triples of symptoms forming ∆2 from
the counting ordered ∆n. The straightforward way is to
review all possible C3

2n−1 combinations from ∆2. But the
computation complexity of such procedure is inaccessible
even for small number of variables (e.g. n > 7).

The main idea of computational complexity reduction is
to choose all possible three symptoms forming different
syndromes but at the same time exclude permutations of
each other since the syndrome entropy is permutation-
invariant.

Theorem 4. Let i and j be the numbers in ∆n of symptoms
Xτ and Xµ forming ∆1 = (Xτ , Xµ, Xτ4µ). Without loss
of generality we might take i < j. Then there exists such k
that i < j < k and Xk = Xτ4µ if for some odd q > 0

j ∈ [bi + qsi; bi + (q + 1)si), (10)

for bi = 2blog2(i)c+1 and si = 2blog2(i)c



Proof: Denote by Xi a symptom on i-th place in ∆n.
Each pair (i, j) forms new ∆1 = (Xi, Xj , Xk) if i < j < k
and

Xj 6= Xi +Xj′(mod 2)

for every j′ < j. For the sake of simplicity we will omit
the (mod 2) sign later on. Also the inclusion Xi ∈ ∆m

will always denote that Xi ∈ ∆m, Xi /∈ ∆m−1 and Xi /∈
∆m+1. Our proof will consist of two steps.

1) Suppose that Xi ∈ ∆m. Then pair (i, j) cannot form
the syndrome ∆1 yet unseen during the enumeration if
j < bi = 2m+1. Indeed, using the principle of inductive
construction of syndromes we obtain

Xi = X2m +Xi′ , Xj = X2m +Xj′

⇒ Xk = Xi +Xj = Xi′ +Xj′ ,

here Xi′ ∈ ∆m−1 and Xj′ ∈ ∆m−1. Then Xk /∈ ∆m and
k < j. This means that symptom constructed on (i, j) is a
permutation of ∆1 = (Xk, Xi, Xj).

2) Suppose that i ∈ [2m; 2m+1) and

j ∈ [2m+1 + q2m; 2m+1 + (q + 1)2m),

where q is odd and

1 ≤ q < 2n − 2m+1

2m
= 2n−m − 2,

Let us show that every pair (i, j) constructed this way won’t
lead to ∆1 not seen before.

The same inductive argument can be used to show that if
in this case Xj ∈ ∆m+1 then

2m+1 + 2m ≤ j < 2m+1 + 2m+1,

thus Xj = Xj′ + X2m+1
for some j1m such that 2m ≤

j′ < 2m+1. But Xi +Xj′ = Xk′ , where 0 ≤ k′ < 2m and
we have Xk = Xk′ +X2m+1

, hence

2m+1 ≤ k < 2m+1 + 2m

and i < k < j and the syndrome based on (i, j) is a
permutation of ∆1 = (Xi, Xj , Xk).

Suppose that for every j such that for k > 1 Xj ∈ ∆m+k

all ∆1 based on (i, j) were already seen. Assume that Xj ∈
∆m+k+1. One can easily see that then j belongs to

[2m+k+1 + 2m+1 + q2m; 2m+k+1 + 2m+1 + (q + 1)2m) =
= [2m+1 + 2m(2k+1 + q); 2m+1 + 2m(2k+1 + q + 1)) =

= [2m+1 + q′2m; 2m+1 + (q′ + 1)2m),

where q′ is odd. Since i ∈ [2m; 2m+1) then2m+1 =
2blog2(i)c+1 = bi and 2m = 2blog2(i)c = si the only
possibility for j is j ∈ [bi + (q − 1)si; bi + qsi).

Now we are ready to present the algorithm which enu-
merates all triples of symptoms excluding the permutations
of each other.

Step 1. In accordance with (10) for each i we construct
the set W (i) of possible variants for j.

Step 2. From (3) we have ∆2 = (∆1, Xν ,∆1 +
Xν(mod 2)). Let k denote the number of Xν . We apply
the formula (10) to j substituted for i and k substituted for
j in order to obtain set W ′(j) of all possible variants for k.

3. The medical application of the symptoms
and syndromes in suvival analysis

3.1. Dataset

We analysed the survival data of 280 patients with the
mean age of 44±1. 79 patients of them had the protoplasmic
astrocytoma (PA), 104 patients had the anaplastic astrocy-
toma (AA), 97 patients had the glioblastoma multiforme
(GBM). The surgical tumor removal, the stereotactic biopsy
and the stereotactic cryodestruction were performed for 197,
16 and 67 patients correspondingly. A set of explanatory
variables was available as well: a consciousness level, cepha-
lalgias, presence of convulsions, tumor sizes, types of the
previous treatment, etc.

3.2. Methods

The Pearson chi-square test and the uncertainty coeffi-
cients were used to analyze contingency tables. The Gehan’s
Wilcoxon (GW) test was used for comparison of multiple
suvival curves. Different groups were selected with the help
of symptom analysis. They were interpreted by means of
stepwise discriminant analysis. Kruskal-Wallis test, t-test
of homogenity of variables, Mann-Whitney U test indi-
cated significant difference between the groups obtained (all
p-levels were less than 0.05).

3.3. Results

Special computer program was used to extract the most in-
formative syndrome ∆2 for the maximal difference between
suvival curves and a set of 3 most informative symptoms
were obtained. Two of them were trivial and means a cepha-
lalgia (presented or not) and the speech disorder as well as
one symptom which means an incompatibility between a
consciousness level (distinct or no) and convulsions. This
way we obtained eight groups of patients denoted later on
by 0, 1, . . . , 7 which were separated the most by suvival
curves. Next we pick out the most informative for survival
generalized symptom (0456, 1237) which equals to 0 when a
patient belongs to groups 0, 4, 5, 6 and equals to 1 otherwise.
Then we pick out the most informative for survival gen-
eralized syndrome ∆1 = (04, 56, 17, 23) which is formed
by symptoms (0456, 1237) and (0234, 1567) (Fig. 1). Third
informative symptom (0126, 3457) is obtained as most
informative for survival from eight symptoms which are
acceptable for ∆2.



Figure 1. Survival curves for different groups.

Analysing ∆1 = (04, 56, 17, 23) and using the stepwise
discriminant analysis we singled out the group 23 where 14
patients were older (63±2 in comparison with 43±1). These
patients were observed for not so long time (< 126 days)
but the rest patients had median survival of 2048 days.

The most successful patients of group 04 were young
(41 ± 2 in comparison with 46 ± 1), their tumor size was
smaller (41280 ± 6143 in comparison with 58595 ± 4405,
p = 0.03). The lower survival quartile (LSQ) was 1568 days.
The ”unfortunate” group 17 with LSQ of 279 days showed
bigger mean tumor size (64880± 6201 in comparison with
47613± 4419, p = 0.02).

Analysing generalized symptoms we obtained the high-
grading symptom (0456, 1237) (p = 0.00001 in GW-test)
since in 1237-group (LSQ of 282 days in comparison with
899 days in remaining group) there were 14.67% patients
with PA, 36.63% with AA and 58.33% with GBM, the
Pearson Chi-square test significance is p < 10−4 and the
uncertainty is 10%.

The generalized symptom (0234, 1567) (p = 0.00033 in
GW-test) can be considered as a stage factor since patients
of 0234-group (LSQ of 1483 days in comparison with 370
days for remaining group) differed by greater Karnofsky
performance score (KPS): 73.5± 1.5 compared to 67± 1.

Using the minimal variety of the block design permutation
at the choice of the third generalized symptom we obtained
(0126, 3457) (p = 0.00112 in GW-test) that can be consid-
ered as the factor of the stereotactic cryodestruction (SC):
in 0126-group (LSQ equals to 310 days) only 14% patients
had SC operation. In 3457-group (LSQ of 810 days) 30%
patients had SC (p-level equals to 0.003).

4. Conclusion

The symptom-syndrome method is proposed for the detec-
tion of main survival factors and their properties by means
of minimal numbers of variables. This method does not
require complete data for all variables in comparison with

the Cox proportional hazards model and is more automated
in comparison with the recursive partitioning analysis [6].
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