Двухфакторный дисперсионный анализ и случайные эффекты

Н.П. Алексеева

СПбГУ, математико-механический факультет

2020 г.

Исследуется уровень адреналина у мышей, содержащихся в разных условиях до периода полового созревания, и выкормленных по-разному. Таким образом, имеются два фактора:

- А условия вскармливания (без матери и с матерью),
- В условия содержания (в изолированных, смежных и общих клетках).

Пусть x_{ijk} обозначает значение переменной X (уровень адреналина), полученное при k-м повторении эксперимента в ячейке $ij,\,i=1,\ldots,I,\,j=1,\ldots,J,\,k=1,\ldots,K.$

Двуфакторная модель с фиксированными эффектами

Модель с фиксированными эффектами имеет вид:

$$x_{ijk} = \mu + \alpha_i + \beta_j + (\alpha \beta)_{ij} + e_{ijk}, \qquad (1)$$

i = 1, ..., I, j = 1, ..., J, k = 1, ..., K,

- \bullet μ генеральное среднее,
- $\alpha_{\rm i}$ дифференциальный эффект фактора A,
- ullet $eta_{
 m j}$ дифференциальный эффект фактора B.
- Величина $(\alpha\beta)_{ij}$ называется взаимодействием факторов. Эта величина учитывает дифференциальный эффект комбинаций i-го уровня фактора A и j-го уровня фактора B, если он не выражается суммой $\alpha_i + \beta_j + \mu$.
- Ошибки e_{ijk} предполагаются независимыми и нормально распределенными $\mathcal{N}(0,\sigma)$.

Оценки параметров модели

При ограничениях на параметры

$$\begin{split} \sum_{i=1}^{I} \alpha_{i} &= 0, \quad i = 1, 2, \dots, I, \quad \sum_{j=1}^{J} \beta_{j} = 0, \ j = 1, 2, \dots, J; \\ \forall j \quad \sum_{i=1}^{I} (\alpha \beta)_{ij} &= 0, \quad \forall i \quad \sum_{j=1}^{J} (\alpha \beta)_{ij} = 0, \end{split}$$

оценками параметров модели (1) являются:

$$\hat{\mu} = \bar{\mathbf{x}}$$
 – общее среднее,

$$\hat{\alpha}_{i} = \bar{x}_{i\cdot} - \bar{x}$$
, где $\bar{x}_{i\cdot}$ – среднее по i-му значению фактора A; $\hat{\beta}_{j} = \bar{x}_{\cdot j} - \bar{x}$, где $\bar{x}_{\cdot j}$ – среднее по j-му значению фактора B; $\widehat{(\alpha\beta)_{ij}} = \bar{x}_{ij\cdot} - \bar{x}_{i\cdot} - \bar{x}_{\cdot j} + \bar{x}$, где $\bar{x}_{ij\cdot}$ – среднее в ячейке ij.

Уровень адреналина при разном вскармливании и содержании

вскармл.	с матерью 3	$.35 \pm 0.15$	вскармл. без матери 4.48 ± 0.15			
отд.кл. ξ_1	\cos б.кл. ξ_2 \cos щ.кл. ξ_3		отд.кл. ξ_1	сооб.кл. ξ_2	общ.кл. ξ_3	
1.9	4	3.2	3.3	6.3	4.6	
2.3	4.6	2.6	4	7.2	4.8	
2.2	5.7	2.2	5	4.6	4.6	
2	5.7	2.6	3.2	7.2	4.4	
2.7	4.8	3.2	2.4	3.8	4.5	
2.8	4.8	2.5	3.6	4.4	4.2	
2.4	5.4	3	3	4.8	4.4	
2.7	3.8	3.3	3	5.8	4.3	
$\bar{x}_{11} = 2.38$	$\bar{x}_{12} = 4.85$	$\bar{x}_{13} = 2.83$	$\bar{x}_{21} = 3.44$	$\bar{x}_{22} = 5.51$	$\bar{x}_{23} = 4.48$	
$\bar{x}_{.1} = 2.91$	$\bar{x}_{\cdot 2} = 5.18$	$\bar{x}_{\cdot 3} = 3.65$				

Матрица плана

Имеем вектор Y размерности IJK, матрицу плана размерности IJK на r = 1 + (I - 1) + (J - 1) + (I - 1)(J - 1) = IJ. Например, при I = 3 и J = 4 она имеет вид:

Y	μ	α_1	α_2	β_1	β_2	β_3	$(\alpha\beta)_{11}$	$(\alpha\beta)_{12}$	$(\alpha\beta)_{13}$	$(\alpha\beta)_{21}$	$(\alpha\beta)_{22}$
y _{11*}	1	1	0	1	0	0	1	0	0	0	0
y _{12*}	1	1	0	0	1	0	0	1	0	0	0
y _{13*}	1	1	0	0	0	1	0	0	1	0	0
y14*	1	1	0	-1	-1	-1	-1	-1	-1	0	0
y _{21*}	1	0	1	1	0	0	0	0	0	1	0
y _{22*}	1	0	1	0	1	0	0	0	0	0	1
y _{23*}	1	0	1	0	0	1	0	0	0	0	0
y24*	1	0	1	-1	-1	-1	0	0	0	-1	-1
y _{31*}	1	-1	-1	1	0	0	-1	0	0	-1	0
y _{32*}	1	-1	-1	0	1	0	0	-1	0	0	-1
y _{33*}	1	-1	-1	0	0	1	0	0	-1	0	0
y34*	1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1

Вектор параметров

 $\beta=(\mu,\alpha_1,\alpha_{I-1},\beta_1,\dots,\beta_{J-1},(\alpha\beta)_{11},\dots,(\alpha\beta)_{I-1,J-1})'$. Общее число наблюдений равно IJK. Остаточная сумма квадратов основной модели равна

$$Q_R = R_0^2 = \sum_{i,j,k} (x_{ijk} - \hat{\mu} - \hat{\alpha}_i - \hat{\beta}_j - (\alpha \hat{\beta})_{ij})^2$$

имеет число степеней свободы IJK — IJ. Для проверки гипотезы $H_0:\alpha_1=\alpha_1=\ldots=\alpha_I=0$ используем $H'\beta=0$, матрицу H' размерности I-1 на r=IJ ранга I-1, вида

 $H' = [0_{I-1,1}|I_{I-1,I-1}|0_{I-1,IJ-I)}].$ Остаточная сумма квадратов усеченной модели равна

$$\begin{split} R_1^2 &= \sum_{i,j,k} (x_{ijk} - \hat{\mu} - \hat{\beta}_j - (\alpha \hat{\beta})_{ij})^2 = R_0^2 + Q_A, \\ \text{где } Q_A &= \sum_{i,j,k} (\hat{\alpha}_i)^2 = JK \sum_{i=1}^I (\bar{x}_{i\cdot} - \bar{x})^2 \\ F &= \frac{IJK - IJ}{I-1} \cdot \frac{R_1^2 - R_0^2}{R_0^2} = \frac{IJK - IJ}{I-1} \cdot \frac{Q_A}{Q_R} \ \sim \ F(I-1,IJK-IJ) \,. \end{split}$$

Аналогично строятся остальные статистики.

Таблица двуфакторного дисперсионного анализа

	1 7 1 2 1		
источник	сумма	степени	средний
дисперсии	квадратов	свободы	квадрат
фактор А	$\mathrm{Q_A} = \mathrm{JK} \sum_{\mathrm{i=1}}^{\mathrm{I}} (\mathbf{ar{x}_{\mathrm{i}\cdot}} - \mathbf{ar{x}})^2$	$\nu_{\rm A} = { m I} - 1$	
			$MQ_A = \frac{Q_A}{\nu_A}$
фактор В	$Q_B = IK \sum_{j=1}^J (\bar{x}_{\cdot j} - \bar{x})^2$	$\nu_{\mathrm{B}} = \mathrm{J} - 1$	
	Ü		$MQ_B = \frac{Q_B}{\nu_B}$
взаимо-	$\mathrm{Q}_{\mathrm{AB}} = \mathrm{K} \sum_{\mathrm{i}=1}^{\mathrm{I}} \sum_{\mathrm{j}=1}^{\mathrm{J}} (\mathbf{ar{x}}_{\mathrm{ij}}$	$ u_{ m AB} =$	
действие АВ	$-ar{\mathrm{x}}_{\mathrm{i}\cdot}-ar{\mathrm{x}}_{\cdot\mathrm{j}}+ar{\mathrm{x}})^2$	= (I-1)(J-1)	$MQ_{AB} = \frac{Q_{AB}}{\nu_{AB}}$
остаток	$Q_R =$		
(ошибка)	$=\sum_{\mathrm{i=1}}^{\mathrm{I}}\sum_{\mathrm{j=1}}^{\mathrm{J}}\sum_{\mathrm{k=1}}^{\mathrm{K}}(\mathrm{x_{ijk}}-\mathbf{ar{x}_{ij.}})^{2}$	$\nu_{\mathrm{R}} = \mathrm{IJ}(\mathrm{K} - 1)$	$MQ_R = \frac{Q_R}{\nu_R}$
полная	$Q_{T} = \sum_{i=1}^{J} \sum_{j=1}^{J} s \sum_{k=1}^{K} (x_{ijk} - \bar{x})^{2}$	$ u_{ m T} = { m IJK} - 1$	
		4014914	

Проверка гипотез

- \bullet средний уровень адреналина 3.35 ± 0.15 в группе с матерью, ниже среднего уровня адреналина 4.48 ± 0.15 в группе без матери.
- \bullet средние $2.91\pm0.18,\,5.18\pm0.18$ и 3.65 ± 0.18 в группах, отличающихся условиями содержания

Нужно выяснить, насколько это значимо.

$$H_0$$
: все $(\alpha\beta)_{ij}=0$ эффект взаимодействия $F=\frac{MQ_{AB}}{MQ_R}\sim F(\nu_{AB},\nu_R)$ H_0 : все $\alpha_i=0$ эффект А-фактора $F=\frac{MQ_A}{MQ_R}\sim F(\nu_A,\nu_R)$ H_0 : все $\beta_j=0$ эффект В-фактора $F=\frac{MQ_B}{MQ_R}\sim F(\nu_B,\nu_R)$

ПРИМЕР l (продолжение) Проверяем гипотезы.

 ${
m H_0}$: все $~\alpha_i=0.~p=0.000003$ — влияние фактора вскармливания значимо для уровня адреналина,

 ${
m H_0}$: все $~\beta_{
m j}=0.~{
m p}<0.000001$ — влияние фактора условия содержания значимо для уровня адреналина:

 ${
m H_0}$: все $~(lphaeta)_{ij}=0.~{
m p}=0.16$ – фактор взаимодействия незначим.

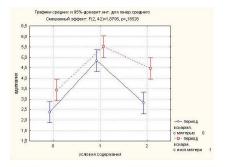


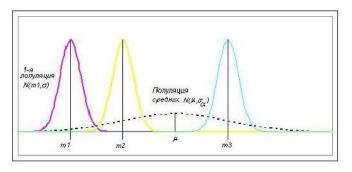
Figure: Иллюстрация отсутствия эффекта взаимодействия факторов вскармливания и содержания.

Модель со случайными эффектами

Подпопуляции выбираются случайно из большого (бесконечного) числа подпопуляций

$$x_{ij} = \mu + a_i + e_{ij}, i = 1, ..., r, j = 1, ..., n_i,$$
 (2)

где a_i распределены по $\mathcal{N}(0, \sigma_a)$, $e_{ij} \sim \mathcal{N}(0, \sigma)$, все a_i и e_{ij} в совокупности независимы.



Проверка значимости случайных эффектов

Гипотеза $H_0: \sigma_a^2 = 0$ означает, что фактор не вносит значимого вклада в дисперсию.

Для проверки гипотезы $H_0: \sigma_a^2 = 0$ используются выражения для математических ожиданий средних квадратов $\frac{Q_1}{r-1}$ и $\frac{Q_2}{n-r}$.

$$\begin{split} \mathbb{E}\left(\frac{Q_2}{n-r}\right) &= \sigma^2,\\ \mathbb{E}\left(\frac{Q_1}{r-1}\right) &= \sigma^2 + k\sigma_a^2, \end{split}$$
 где $k = \frac{1}{r-1}\left(n - \frac{1}{n}\sum_{i=1}^r n_i^2\right).$

Используем выражения $x_{ij}=\mu+a_i+\epsilon_{ij}$ и $\bar{x}_i=\mu+a_i+\bar{\epsilon}_i$ для вычисления $\mathbb{E}Q_2$.

$$\begin{split} Q_2 &= \sum_{i=1}^r \sum_{j=1}^{n_i} (x_{ij} - \bar{x}_i)^2 = \sum_{i=1}^r \sum_{j=1}^{n_i} (\mu + a_i + \epsilon_{ij} - \mu - a_i - \bar{\epsilon}_i)^2 = \\ &= \sum_{i=1}^r \sum_{j=1}^{n_i} \epsilon_{ij}^2 - \sum_{i=1}^r n_i \bar{\epsilon}_i^2, \quad \sum_{i=1}^r n_i = n, \\ \mathbb{E}Q_2 &= \sum_{i=1}^r \sum_{j=1}^{n_i} \mathbb{E}\epsilon_{ij}^2 - \sum_{i=1}^r n_i \mathbb{E}\bar{\epsilon}_i^2 = n\sigma^2 - \sum_{i=1}^r n_i \frac{\sigma^2}{n_i} = (n-r)\sigma^2 \,. \end{split}$$

Для вычисления $\mathbb{E}\mathrm{Q}_1$ используем выражения $\bar{\mathrm{x}}_{\mathrm{i}} = \mu + \mathrm{a}_{\mathrm{i}} + \bar{\epsilon}_{\mathrm{i}}$ и

$$\begin{split} \bar{x} &= \frac{1}{n} \sum_{i=1}^r \sum_{j=1}^{n_i} x_{ij} = \frac{1}{n} \sum_{i=1}^r n_i \bar{x}_i = \mu + \frac{1}{n} \sum_{i=1}^r n_i a_i + \bar{\epsilon}, \\ Q_1 &= \sum_{i=1}^r \sum_{j=1}^{n_i} (\bar{x}_i - \bar{x})^2 = \sum_{i=1}^r \sum_{j=1}^{n_i} \left((a_i + \bar{\epsilon}_i) - \left(\frac{1}{n} \sum_{i=1}^r n_i a_i + \bar{\epsilon} \right) \right)^2 = \\ &= \sum_{i=1}^r n_i (a_i + \bar{\epsilon}_i)^2 - n \left(\frac{1}{n} \sum_{i=1}^r n_i a_i + \bar{\epsilon} \right)^2; \end{split}$$

Считаем математическое ожидание.

$$\begin{split} \mathbb{E}Q_1 &= \sum_{i=1}^r n_i \mathbb{E}(a_i + \bar{\epsilon}_i)^2 - n \mathbb{E}\left(\frac{1}{n} \sum_{i=1}^r n_i a_i + \bar{\epsilon}\right)^2 = \\ &= \sum_{i=1}^r n_i \mathbb{D}(a_i + \bar{\epsilon}_i) - n \mathbb{D}\left(\frac{1}{n} \sum_{i=1}^r n_i a_i + \bar{\epsilon}_i\right) = \\ &= \sum_{i=1}^r n_i \left(\sigma_a^2 + \frac{\sigma^2}{n_i}\right) - n \left(\sigma_a^2 \frac{1}{n^2} \sum_{i=1}^r n_i^2 + \frac{\sigma^2}{n}\right) = \\ &= (r-1)\sigma^2 + \sigma_a^2 \left(n - \frac{1}{n} \sum_{i=1}^r n_i^2\right) = (r-1)\left(\sigma^2 + k\sigma_a^2\right), \end{split}$$
 где $k = \frac{1}{r-1} \left(n - \frac{1}{n} \sum_{i=1}^r n_i^2\right).$

Если $n_1 = \ldots = n_r = m$, то n = rm,

$$k = \frac{1}{r-1} \left(n - \frac{1}{n} \sum_{i=1}^{r} m^2 \right) = \frac{1}{r-1} \left(rm - \frac{rm^2}{rm} \right) = m.$$

Статистика критерия и оценка дисперсии

Таким образом, $\mathbb{E}Q_1 = (r-1)(\sigma^2 + k\sigma_a^2)$, $\mathbb{E}Q_2 = (n-r)\sigma^2$.

При $H_0: \sigma_a^2=0$ статистики $\frac{Q_2}{n-r}$ и $\frac{Q_1}{r-1}$ имеют одинаковые математические ожидания $\sigma^2,$ поэтому

$$F = \frac{n-r}{r-1} \cdot \frac{Q_1}{Q_2} \sim F(r-1, n-r).$$

Заметим, что в случае однофакторного дисперсионного анализа значимости моделей со случайными и фиксированными эффектами совпадают.

Оценка дисперсии $\sigma_{\rm a}^2$

$$\widehat{\sigma}_{a}^{2} = \frac{1}{k} \left(\frac{Q_{1}}{r-1} - \frac{Q_{2}}{n-r} \right).$$

Двухфакторный дисперсионный анализ со случайными эффектами

Модель со случайными эффектами имеет вид:

$$x_{ijk} = \mu + a_i + b_j + (ab)_{ij} + e_{ijk},$$
 где (3)

- i = 1, ..., I, j = 1, ..., J, k = 1, ..., K,
- \bullet μ генеральное среднее,
- случайные дифференциальные эффекты A-фактора a_i независимы и распределены по $\mathcal{N}(0; \sigma_a)$,
- случайные дифференциальные эффекты B-фактора b_j независимы и распределены по $\mathcal{N}(0; \sigma_b)$,
- эффекты взаимодействия (ab)_{ij} независимы и распределены по $\mathcal{N}(0; \sigma_{ab})$.
- Величины e_{ijk} независимы и распределены по $\mathcal{N}(0;\sigma)$.
- Все величины $a_i, b_j, (ab)_{ij}, e_{ijk}$ независимы в совокупности.

Математические ожидания статистик и оценки дисперсий

источник	средний	математическое
дисперсии	квадрат	ожидание
A	MQ_A	$\sigma^2 + K\sigma_{ab}^2 + JK\sigma_a^2$
В	MQ_{B}	$\sigma^2 + K\sigma_{ab}^2 + IK\sigma_b^2$
AB	MQ_{AB}	$\sigma^2 + K\sigma_{ab}^2$
R	MQ_R	σ^2

Отсюда получаем выражения для оценок дисперсий:

$$\begin{split} \sigma_{ab}^2 &= \frac{MQ_{AB} - MQ_R}{K} \\ \sigma_a^2 &= \frac{MQ_A - MQ_{AB}}{JK}, \ \ \sigma_b^2 = \frac{MQ_B - MQ_{AB}}{IK} \,. \end{split}$$

Критерии значимости случайных эффектов

Для проверки гипотез

- $H_0: \sigma_{ab}^2 = 0$ используется отношение $F = \frac{MQ_{AB}}{MQ_R},$ $\nu_{AB} = (I-1)(J-1),$
- $H_0: \sigma_a^2 = 0$ используется отношение $F = \frac{MQ_A}{MQ_{AB}},$ $\nu_a = I-1\,,$
- $H_0: \sigma_b^2 = 0$ отношение $F = \frac{MQ_B}{MQ_{AB}}, \ \nu_b = J-1$.

ПРИМЕР (продолжение)

- При проверке гипотезы $H_0: \sigma_{ab}^2 = 0$ об отсутствии взаимодействия получаем тот же критерий, что и в случае модели с фиксированными эффектами. p = 0.16, взаимодействие незначимо.
- При проверке гипотезы $H_0: \sigma_a^2 = 0$ об отсутствии эффекта условий вскармливания получаем значимость p = 0.059.
- При проверке гипотезы $H_0: \sigma_b^2 = 0$ получаем значимость p = 0.044.

Значимости отличаются от значимостей в модели с фиксированными эффектами, сохраняется только соотношение между ними: фактор условия содержания более значим, чем фактор вскармливания.

Двуфакторная модель со смешанными эффектами

Модель со смешанными эффектами имеет вид:

$$x_{ijk} = \mu + \alpha_i + b_j + (\alpha b)_{ij} + e_{ijk}, \ \text{где}$$
 (4)

- i = 1, ..., I, j = 1, ..., J, k = 1, ..., K,
- \bullet μ генеральное среднее,
- ullet $lpha_{i}$ i-й дифференциальный эффект A-фактора,
- b_j случайные эффекты В-фактора независимы и нормально распределены $\mathcal{N}(0; \sigma_b)$,
- эффекты взаимодействия $(\alpha b)_{ij}$ независимы и нормально распределены $\mathcal{N}(0; \sigma_{ab})$.
- величины e_{ijk} независимы распределены по $\mathcal{N}(0;\sigma)$.
- ullet все величины $b_j, (\alpha b)_{ij}, e_{ijk}$ независимы в совокупности.

источник	средний	математическое
дисперсии	квадрат	ожидание
A B AB R	$\begin{array}{c} MQ_A\\ MQ_B\\ MQ_{AB}\\ MQ_R \end{array}$	$\sigma^{2} + K\sigma_{ab}^{2} + \frac{JK\sum\limits_{i=1}^{I}\alpha_{i}^{2}}{I-1}$ $\sigma^{2} + K\sigma_{ab}^{2} + IK\sigma_{b}^{2}$ $\sigma^{2} + K\sigma_{ab}^{2}$ σ^{2}

Для проверки гипотезы

 $\mathrm{H}_0:\sigma_\mathrm{ab}^2=0$ используется отношение $\mathrm{F}=rac{\mathrm{MQ_{AB}}}{\mathrm{MQ_R}},$ для

 $\mathrm{H}_0:\sigma_\mathrm{b}^2=0$ используется отношение $\mathrm{F}=rac{\mathrm{MQ_B}}{\mathrm{MQ_{AB}}},$ для

 H_0 : все $\alpha_i=0$ отношение $F=\frac{MQ_A}{MQ_{AB}}$ с соответствующими степенями свободы.

Заметим, что если в двуфакторном плане имеется один случайный фактор, то результаты дисперсионного анализа будут такие же, как и в случае двух случайных факторов.

Способ вычислений в R

```
\label{eq:data} $$ \data <- \colored conditions of the condition of the
```

	Df	$\operatorname{Sum} \operatorname{Sq}$	Mean Sq	F value	$\Pr(>F)$
f1	2	2589	1294.3	4.754	0.0167 *
f2	1	59	59.2	0.218	0.6445
f1:f2	2	591	295.5	1.085	0.3516
Residuals	28	7623	272.2		

Для вывода средних значений можно использовать функцию model.tables

Построение графика взаимодействия факторов

```
 \begin{split} &K1 < -length(table(df\$f1)); \ K2 < -length(table(df\$f2)) \\ &interaction.plot(x.factor=df\$f1, \ trace.factor=df\$f2, \ response=df\$x, \\ &fun = mean, \ type = "b", \ legend = FALSE, \ trace.label = "group", \\ &xlab = "craving", \ ylab = "HR", \ lty = seq(K2), \ col = seq(K2), \ pch = 20) \\ &legend('bottomright',paste("depress",names(table(df\$f2))), \ lty = seq(K2), \\ &col = seq(K2), \ cex = 0.7, \ pch = 20) \end{split}
```

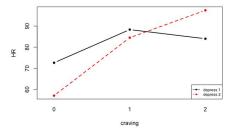


Figure: Эффекты взаимодействия факторов: тяга к алкоголю и депрессия.